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Abstract. We provide an explicit description of the recurrent configurations of the sandpile model
on a family of graphs Ĝµ,ν , which we call clique-independent graphs, indexed by two compositions µ

and ν. Moreover, we define a delay statistic on these configurations, and we show that, together with
the usual level statistic, it can be used to provide a new combinatorial interpretation of the celebrated
shuffle theorem of Carlsson and Mellit. More precisely, we will see how to interpret the polynomials
⟨∇en, eµhν⟩ in terms of these configurations.

1. Introduction

The celebrated shuffle theorem of Carlsson and Mellit [CM18] provided a positive solution to a long-
standing conjecture about a combinatorial formula for the Frobenius characteristic of the so-called diag-
onal harmonics. More precisely, this theorem gives the monomial expansion of the symmetric function
∇en, where en is the elementary symmetric function of degree n in the variables x1, x2, . . . , and ∇ is
the famous nabla operator introduced in [BGHT99]. In this formula, to each labelled Dyck path of size
n corresponds a monomial, where the variables x1, x2, . . . keep track of the labels, while the variables q
and t keep track of the bistatistic (dinv, area).

In [LR04] Loehr and Remmel provided an alternative combinatorial interpretation of the same symmetric
function in terms of the same objects, but using the bistatistic (area, pmaj). In particular, they showed
bijectively that the two combinatorial formulas coincide. In the present article we show that this last
combinatorial formula has a natural interpretation in terms of the sandpile model.

The (abelian) sandpile model is a combinatorial dynamical system on graphs first introduced by Bak,
Tang and Wiesenfeld [BTW87] in the context of “self-organized criticality” in statistical mechanics. The
sandpile model (and variants of it) have found applications in a wide variety of mathematical contexts
including enumerative combinatorics, tropical geometry, and Brill–Noether theory, among others: see
[Kli19] for a nice introductory monograph. In the present article we only consider the sandpile model
with a sink.

A well-known link between the combinatorics of this dynamical system and that of the underlying
graph is given by the so-called recurrent configurations (see Definition 4.4). For example, the recurrent
configurations of the sandpile model are in bijection with the spanning trees of the graph (see e.g. [CL03]).

If the underlying graph presents some symmetries, then it is natural to look at the recurrent config-
urations modulo those symmetries. For example, for the complete graph we can identify recurrent
configurations that are the same up to a permutation of the vertices (not moving the sink): perhaps not
surprisingly, we still unearth some interesting combinatorics, as in this case we find Catalan many such
sorted configurations.

More formally, consider the sandpile model on a graph G, and let Aut(G) be the automorphism group
of G. Consider a subgroup Γ of the stabilizer of the sink. Now Γ acts naturally on the set Rec(G) of
recurrent configurations: we are interested in the orbits of this action that we will call sorted recurrent
configurations.

We will consider an explicit family of graphs Ĝµ,ν indexed by pairs of compositions µ and ν. For such
a graph Ĝµ,ν we will look at a subgroup Γ of its automorphism group that will be isomorphic to the
Young subgroup Sµ ×Sν of the symmetric group Sn, where n = |µ|+ |ν|. We denote by SortRec(µ; ν)

the set of corresponding sorted recurrent configurations of Ĝµ,ν .
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For every recurrent configuration κ of Ĝµ,ν , we will define a new statistic, called the delay of κ (denoted
delay(κ)), which we will couple with the usual level statistic (denoted level(κ)). To state our main result,
we need a few more definitions.

Given a composition µ = (µ1, µ2, . . . ), we denote by eµ the product eµ1
eµ2

· · · , and similarly hµ =
hµ1hµ2 · · · , where en and hn are the elementary and complete homogeneous symmetric function of degree
n, respectively. Finally, we denote by ⟨−,−⟩ the usual (Hall) scalar product on symmetric functions (see
[Hag08, Chapter 1]).

Theorem 1.1. For every pair of compositions µ, ν such that n = |µ|+ |ν| we have

⟨∇en, eµhν⟩ =
∑

κ∈SortRec(µ;ν)

qlevel(κ)tdelay(κ).

Notice that for µ = ∅, the coefficient ⟨∇en, hν⟩ is simply the coefficient of xν = xν1
1 xν2

2 · · · in ∇en, hence
this formula gives in particular a new combinatorial interpretation of the monomial expansion of the
symmetric function ∇en in terms of the sandpile model.

The idea of the proof is to show that the sorted recurrent configurations with the (level, delay) bistatistic
correspond bijectively to the labelled Dyck paths predicted by the shuffle theorem with the (area, pmaj)
bistatistic.

Notice that Theorem 1.1 extends several previous results in the literature: the case Ĝ∅,(n) was already
worked out in [CL16], (a slight modification of) the case Ĝ(m,n−m),∅ already appears in [ADD+14, DL13],
while the case Ĝ(m),(n−m) is dealt with in [DDL23].

Other articles in which sorted recurrent configurations appear are for example [ADDL16] and [DL18].
It should be noticed that the works [CL16] and [DL18] inspired the results in [CP17] and [CDJP19]
respectively, which belong to tropical geometry and Brill-Noether theory.

We hope that the findings in the present article motivate further investigation of sorted recurrent con-
figurations, and their relation to other parts of mathematics.

The article is organized in the following way. In Section 2 we recall the combinatorial definitions of
the shuffle theorem with the (area, pmaj) bistatistic. In Section 3 we introduce our clique-independent
graphs, while in Section 4 we recall some basic facts about the sandpile model. In Section 5 we introduce
the statistic delay via a toppling algorithm, which will be used in Section 6 to characterize the sorted
recurrent configurations of our clique-independent graphs. Finally, in Section 7 we provide a bijection
between sorted configurations and parking functions, proving our main result.

Acknowledgments. D’Adderio is partially supported by PRIN 2022A7L229 ALTOP and by INDAM
research group GNAMPA. D’Adderio, Lazar and Vanden Wyngaerd are partially supported by ARC
“From algebra to combinatorics, and back”. Le Borgne is partially supported by ANR Combiné ANR-
19-CE48-0011.

2. Combinatorics of the shuffle theorem

For every n ∈ N, we set [n] := {1, 2, . . . , n}. The pmaj statistic was first introduced in [LR04]. The area
statistic is the classical area statistic that has appeared in the many other papers concerning this topic.

Definition 2.1. A Dyck path of size n is a lattice path going from (0, 0) to (n, n), using only north and
east steps and staying weakly above the line x = y (also called the main diagonal). A labelled Dyck
path is a Dyck path whose vertical steps are labelled with (not necessarily distinct) positive integers such
that, when placing the labels in the square to the right of its step, the labels appearing in each column
are strictly increasing from bottom to top. For us, a parking function1 of size n is a labelled Dyck path
of size n whose labels are precisely the elements of [n]. See Figure 1 for an example.

The set of all parking functions of size n is denoted by PF(n).

1These are in bijection with the functions f : [n] → [n] such that #{1 ≤ j ≤ n | f(j) ≥ i} ≤ n+ 1− i, by defining f(i)
to be the column containing the label i.
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Figure 1. An element D of PF((4, 3); (3, 2)). The colors and crosses are explained in Example 7.1.

Definition 2.2. Given D ∈ PF(n), we define its area word to be the string a(D) = a1(D) · · · an(D)
where ai(D) is the number of whole squares in the ith row (from the bottom) between the path and the
main diagonal. We define the area of D as

area(D) :=

n∑
i=1

ai(D).

Example 2.3. The area word of the path in Figure 1 is 012344545223 and its area is 35.

To introduce the other statistic, we need a couple of definitions.

Definition 2.4. Let a1a2 · · · ak be a word of integers. We define its descent set

Des(a1a2 · · · ak) := {1 ≤ i ≤ k − 1 | ai > ai+1}

and its major index maj(a1a2 · · · ak) as the sum of the elements of the descent set.

Definition 2.5. Let D ∈ PF(n). We define its parking word p(D) as follows.

Let C1 be the set containing the labels appearing in the first column of D, and let p1(D) := maxC1. At
step i, let Ci be the set obtained from Ci−1 by removing pi−1(D) and adding all the labels in the ith

column of the D; let
pi(D) := max {x ∈ Ci | x ≤ pi−1(D)}

if this last set is non-empty, and pi(D) := max Ci otherwise. We finally define the parking word of D as
p(D) := p1(D) · · · pn(D).

Definition 2.6. We define the statistic pmaj on D ∈ PF(n) as

pmaj(D) := maj(pn(D) · · · p1(D)).

Example 2.7. For example, the parking word of the parking function D in Figure 1 is 1097653211841122.
In fact, we have C1 = {3, 4, 5, 6, 9, 10}, C2 = {3, 4, 5, 6, 9, 7, 11}, C3 = {3, 4, 5, 6, 7, 11}, and so on. The
descent set of the reverse is {1, 5}, so pmaj(D) = 6.

Definition 2.8. For D ∈ PF(n) we set li(D) to be the label of the ith vertical step. Then the pmaj
reading word of D is the sequence l1(D) · · · ln(D), i.e. the sequence of the labels read bottom to top.

2We put a bar on the two-digit numbers not to confuse them.
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For example, the labelled Dyck path in Figure 1 has pmaj reading word 356910711284112.

Given two compositions µ = (µ1, µ2, . . . ) and ν = (ν1, ν2, . . . ) with |µ| + |ν| = n, let Kµ1 = {n, n −
1, . . . , n−µ1+1}, Kµ2 = {n−µ1, n−µ1−1, . . . , n−µ1−µ2+1}, and so on, and let Iν1 = {1, 2, . . . , ν1},
Iν2

= {ν1 + 1, ν1 + 2, . . . , ν1 + ν2}, and so on. Notice that the sets Kµ1
,Kµ2

, . . . , Iν1
, Iν2

, . . . form a
partition of [n].

Now let ↑Kµi
be the word consisting of the elements of Kµi

in increasing order: for example ↑Kµ1
=

(n− µ1 + 1)(n− µ1 + 2) · · · (n− 1)n. Similarly, let ↓Iνj
be the word consisting of the elements of Iνj

in
decreasing order: for example ↓Iν1

= ν1(ν1 − 1) · · · 21.

Consider the shuffle

W(µ; ν) :=↑Kµ1� ↑Kµ2 � · · ·� ↑Kµℓ(µ)
� ↓Iν1� ↓Iν1 � · · ·� ↓Iνℓ(ν)

,

which we can think of as a set of permutations in Sn in one-line notation. Let PF(µ; ν) be the set of
parking functions whose pmaj reading word is in W(µ; ν).

For example2, W((4, 3); (3, 2)) = 910 11 12� 678� 54� 321, and the pmaj reading word of the parking
function D in Figure 1 belongs to it, so that D ∈ PF((4, 3); (3, 2)).

We can now state the shuffle theorem in the form that is suitable for our purposes: this is a combination
of the main results in [CM18] and [LR04] together with the superization: see [Hag08, Chapter 6].

Theorem 2.9. For every pair of compositions µ and ν with |µ|+ |ν| = n we have

⟨∇en, eµhν⟩ =
∑

D∈PF(µ;ν)

qarea(D)tpmaj(D).

3. The clique-independent graphs Ĝµ,ν

Definition 3.1. Let µ, ν be two compositions (i.e. tuples of positive integers). Set n = |µ| + |ν|. We
define a graph Gµ,ν with set of vertices [n] consisting of the following components3:

• ℓ(µ) clique components, i.e. complete graphs, Kµ1 ,Kµ2 , . . . , on µ1, µk, . . . vertices respectively.
The vertices of Kµ1

are n, n−1, . . . , n−µ1+1; the vertices of Kµ2
are n−µ1, n−µ1−1, . . . , n−

µ1 − µ2 + 1; and so on.

• ℓ(ν) independent components, i.e. graphs without edges, Iν1
, Iν2

, . . . , on ν1, ν2, . . . vertices re-
spectively; the vertices of Iν1

are 1, 2, . . . , ν1; the vertices of Iν2
are ν1 + 1, ν1 + 2, . . . , ν1 + ν2;

and so on.

Finally, two vertices in distinct components are always connected by an edge.

Example 3.2. If µ = ∅, then G∅,ν is the complete multipartite graph Kν1,ν2,.... If ν = ∅, then Gµ,∅
is isomorphic to the complete graph K|µ|; however, for our purposes we will distinguish between G(|µ|),∅
and G(µ1,µ2,... ),∅, as we will consider the action of different groups of automorphisms, which will lead to
different sorted configurations.

Given one of our labelled graphs Gµ,ν , we define the graph Ĝµ,ν simply as Gµ,ν to which we add a vertex
0, and we connect it with every other vertex. We will refer to the clique and the independent components
of Ĝµ,ν as the corresponding components of Gµ,ν seen as subgraphs of Ĝµ,ν . We will consider the sandpile
model on Ĝµ,ν , where 0 is the sink. Figure 2 is an illustration of the graph Ĝ(4,3),(3,2).

4. Basics of the sandpile model

In the present work by a graph we will always mean a simple graph, i.e. a graph with no loops and no
multiple edges.

Definition 4.1. Let G be a finite, undirected graph on the vertex set {0, 1, . . . , n}.

A configuration of the sandpile (model) on G is a map κ : {0} ∪ [n] → Z that assigns a (integer) number
of “grains of sand” to each nonzero vertex of G.

3Notice that the notation is consistent with the one used in Section 2.
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Figure 2. The graph Ĝ(4,3),(3,2). The vertices 1, 2 and 3 have degree 10, the vertices 4
and 5 have degree 11, and all the other vertices have degree 12.

If 0 ≤ κ(v) we say that v is non-negative. If κ(v) ≤ deg(v), we say that v is stable, and otherwise it is
unstable. Any vertex can topple (or fire), and “donate a single grain” to each of its neighbors: the result
is a new configuration κ′ in which κ′(v) = κ(v)− deg(v) and for any w ̸= v

κ′(w) =

{
κ(w) + 1, if (v, w) is an edge
κ(w), otherwise.

For any v ∈ {0, . . . , n} we write ϕv for the toppling operator at vertex v. That is ϕv(κ) is a new
configuration obtained from κ by toppling the vertex v.

The vertex 0 is special in this model, and we call it the sink, while we call all the others non-sink vertices.
We say that a configuration κ is non-negative if all of its non-sink vertices are non-negative, stable if all
of its non-sink vertices are stable, and unstable if at least one of its non-sink vertices is unstable.

Remark 4.2. Notice that the notion of stable configuration has no dependency on the value on the sink.
Therefore, as it is customary, we will ignore the value of a configuration on the sink, and consider the
configurations as restricted to the non-sink vertices. Moreover, we will identify every configuration κ
with the word κ(n)κ(n− 1) · · ·κ(2)κ(1).

Example 4.3. Consider the graph Ĝ(4,3),(3,2) (see Figure 2), whose vertices are {0} ∪ [12], and let 0 be
the sink. The configuration κ given by2 310 11 11810 11 104973 is a stable configuration. We provide below
some examples of such topplings:

ϕ0(κ) = 411 12 12911 12 1151084,

(ϕ10◦ϕ0)(κ) = 512013 10 12 13 1261195,

(ϕ9◦ϕ10◦ϕ0)(κ) = 613 1111 13 14 13712 106,

(ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 714 2212115 14813 117,

(ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 815 33132315914 128,

(ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 916 4414344915 139,

(ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 10 17 5515455105139,

(ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 11 18 661656611539.
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Definition 4.4. Let κ be a stable configuration, and consider the configuration ϕ0(κ). We say that κ is
recurrent4 if from ϕ0(κ) there is an order of all the non-sink vertices such that by toppling the vertices
in that precise order we always stay non-negative. Of course at the end of this sequence of topplings we
will be back to κ, since each edge will be crossed by a single grain in each direction. More precisely, a
stable configuration κ is recurrent if there is a permutation σ = σ1σ2 · · ·σn ∈ Sn such that

ϕ0(κ), (ϕσ(1) ◦ ϕ0)(κ), (ϕσ(2) ◦ ϕσ(1) ◦ ϕ0)(κ), . . . , (ϕσ(n) ◦ · · · ◦ ϕσ(1) ◦ ϕ0)(κ) = κ

are all non-negative configurations. In this case, σ is the toppling word of this sequence of topplings, and
we say that this sequence verifies the recurrence of κ.

Example 4.5. The configuration κ = 310 11 11810 11 104973 is a recurrent configuration for Ĝ(4,3),(3,2):
indeed it is easy to check that σ = 109765321184112 verifies the recurrence of κ (cf. Example 2.7).

Remark 4.6. It is well known (see e.g. [ADDL16, Theorem 2.4]) that the condition for κ to be recurrent
is equivalent to say that starting from ϕ0(κ) there is no proper (possibly empty) subset A of [n] such
that toppling all the vertices of A brings ϕ0(κ) to a stable configuration.

Definition 4.7. Given a recurrent configuration κ of G, we define its level as

level(κ) := −|Es(G)|+
n∑

i=1

κ(i)

where Es(G) is the set of edges of G that are not incident to the sink.

It is well-known that level(κ) ≥ 0, and there exists a recurrent configuration of level 0 if G is connected
[ML97].

Remark 4.8. For Ĝµ,ν with |µ| + |ν| = n, (by removing from the complete graph on {0} ∪ [n] all the
edges between vertices in the same independent component) we have

|Es(Ĝµ,ν)| =
(
n

2

)
−

∑
i≥0

(
νi
2

)
.

Example 4.9. The configuration κ = 310 11 11810 11 104973 for Ĝ(4,3),(3,2) has level

level(κ) = −
(
12

2

)
+

(
3

2

)
+

(
2

2

)
+ 97 = 35.

5. The toppling algorithm and the delay statistic

Consider the sandpile model on a graph G with vertices {0}∪[n], where 0 is the sink. Let κ be a recurrent
configuration of G. Consider Algorithm 1. Before discussing the algorithm, let us look at an example.

Example 5.1. Consider again the configuration κ from Example 4.3: in that example we actually
computed the sequence of topplings given by the first iteration of the for loop of Algorithm 1 applied to
κ. We compute the second iteration of the for loop:

(ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 1267717677126410,

(ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 137885788137511,

(ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 14899689828612,

(ϕ1◦ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 15910 10791093862,

and finally the third and last iteration of the for loop:

(ϕ12◦ϕ1◦ϕ4◦ϕ8◦ϕ11◦ϕ2◦ϕ3◦ϕ5◦ϕ6◦ϕ7◦ϕ9◦ϕ10◦ϕ0)(κ) = 310 11 11810 11 104973 = κ.

Hence, the output of Algorithm 1 applied to κ is the word 109765321184112 (cf. Example 2.7 and Exam-
ple 4.5).
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Algorithm 1 Toppling algorithm
Input: A graph G with n non-sink vertices and a recurrent configuration κ
Output: The word of non-sink vertices in the order they have been toppled

Topple the sink, i.e. compute ϕ0(κ)
Initialize the output word as empty
while there are non-sink vertices that are untoppled do

for i going from n to 1 (in decreasing order) do
if vertex i is unstable then

Topple vertex i ▷ possibly creating new unstable vertices
Append i to the output word

end if
end for

end while

Observe that, by construction, the algorithm terminates: since κ is recurrent, ϕ0(κ) is non-negative and
at least one of the vertices adjacent to the sink is unstable; then every time we topple we stay non-
negative, and since κ is recurrent the process must go through all the non-sink vertices (otherwise we
found a subset A of non-sink vertices such that after we topple its vertices we are in a stable configuration,
cf. Remark 4.6).

By construction the algorithm outputs a toppling sequence that verifies the recurrence of κ. We can now
define our new statistic on recurrent configurations.

Definition 5.2. Let κ be a recurrent configuration of G. For every i ∈ [n], let ri(κ) be the number of
for loop iterations in Algorithm 1 that occurred before the one in which the vertex i is toppled (so if i
is toppled in the first iteration, then ri(κ) = 0). Then we define the delay of κ as

delay(κ) :=
n∑

i=1

ri(κ).

Remark 5.3. If σ is the output of Algorithm 1 applied to κ, then, since clearly descents in the permutation
σnσn−1 · · ·σ1 correspond to while loop iterations in the computation of the delay, we have

delay(κ) = maj(σnσn−1 · · ·σ1).

Example 5.4. For the configuration κ of Example 4.3, we found in Example 5.1 that Algorithm 1 gives
σ = 109765321184112, so that delay(κ) = maj(121481123567910) = 1 + 5 = 6. Actually, looking at the
computation of the algorithm, we find that the word r1(κ)r2(κ) · · · in this case is 100100010012, whose
letters add up to 6 (cf. Example 2.7).

6. Sorted recurrent configurations of Ĝµ,ν

Let µ and ν be two compositions such that |µ| + |ν| = n, and consider the Young subgroup Sµ × Sν

of the symmetric group Sn consisting of the permutations that preserve the components of Gµ,ν . We
want to consider configurations modulo the natural action of Sµ×Sν on the set of configurations. More
precisely, a sorted configuration5 of the sandpile on Ĝµ,ν is a configuration κ that is weakly decreasing
inside each clique component of Ĝµ,ν and weakly increasing inside each independent component of Ĝµ,ν :
if i, j ∈ Kµr and i < j, then κ(i) ≥ κ(j); if i, j ∈ Iνs and i < j, then κ(i) ≤ κ(j).

Example 6.1. The configuration
κ = 310 11 11810 11 104973

is a sorted recurrent configuration of Ĝ(4,3),(3,2) (recall that in our notation κ = κ(n)κ(n− 1) · · ·κ(1)).

4In the literature “recurrent” is sometimes used in a broader sense than in this paper. Configurations that are recurrent
in our sense are called critical in these settings. The notion of a recurrent configuration comes from a Markov chain on
sandpile configurations not detailed here. The algorithmic characterisation that we used here as definition is called the
Dhar criterion.

5The relation with the general definition of sorted configuration given in the introduction is simply that we are picking
a specific convenient element in each orbit.
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Let κ be a sorted recurrent configuration of Ĝµ,ν . Let σ ∈ Sn be the toppling word produced by
Algorithm 1 applied to κ. For every vertex v in a clique component Kµr

we set6

κ̃(v) := κ(v).

For every independent component Iνs
of Gµ,ν , we order its vertices in decreasing order, and if v(s)j is the

jth vertex of Iνs
, we set

κ̃(v
(s)
j ) := κ(v

(s)
j ) + νs − j.

Remark 6.2. Since κ is sorted, it is weakly increasing on the vertices of Iνs
, i.e., using the notation above,

κ(v
(s)
j ) ≥ κ(v

(s)
j+1) for every j ∈ [νs − 1]. Therefore κ̃ is strictly increasing on the vertices of Iνs

, i.e.

κ̃(v
(s)
j ) = κ(v

(s)
j ) + νs − j ≥ κ(v

(s)
j+1) + νs − j > κ(v

(s)
j+1) + νs − (j + 1) = κ̃(v

(s)
j+1)

for every j ∈ [νs − 1].

Given two compositions µ and ν, let Ĝµ⊔ν,∅ be the labelled graph obtained from Ĝµ,ν by turning its
independent components into clique components, i.e. by adding all the missing edges; but notice that
for this graph we keep the same notation for the components as the one for Ĝµ,ν , and we call a stable
configuration sorted if it is weakly decreasing in the original clique components Kµs

and weakly increasing
in the new clique components Iνr , i.e. the ones coming from independent components of Ĝµ,ν .

Lemma 6.3. Given µ and ν two compositions, if κ is a sorted stable configuration for Ĝµ,ν , then κ̃ is
sorted stable for Ĝµ⊔ν,∅. Moreover, if κ is recurrent for Ĝµ,ν , then κ̃ is recurrent for Ĝµ⊔ν,∅, and in
this case if σ ∈ Sn is the toppling word produced by Algorithm 1 applied to κ on Ĝµ,ν , then σ is also the
toppling word produced by Algorithm 1 applied to κ̃ on Ĝµ⊔ν,∅.

Proof. The stability of κ̃ for Ĝµ⊔ν,∅ is clear, since, going from Ĝµ,ν to Ĝµ⊔ν,∅, all that happens is that
for every r the degree of the vertices in Iνr

goes up by νr − 1. If κ is sorted for Ĝµ,ν , then by definition
κ̃ is sorted for Ĝµ⊔ν,∅.

About σ: let κ be sorted recurrent for Ĝµ,ν , and suppose that for the first N visited7 vertices Algorithm 1
did exactly the same topplings while running on Ĝµ,ν for κ and while running on Ĝµ⊔ν,∅ for κ̃. So we
reached the configurations u and ũ respectively, and now it comes the (N + 1)st vertex to visit, say v,
which belongs to a given component. If we topple a vertex in a different component, the effect on the
values on the vertices of our component is the same in Ĝµ,ν and in Ĝµ⊔ν,∅. If our given component is a
clique component, then toppling one of its vertices is going to have the same effect in Ĝµ,ν and in Ĝµ⊔ν,∅
on the values at the vertices of our component.

So if the component of v is a clique component, then it is clear that u(v) = ũ(v) and Algorithm 1 is
going to topple v while running on Ĝµ,ν for κ if and only if it topples v while running on Ĝµ⊔ν,∅ for κ̃.
Suppose now that v belongs to an independent component Iνr

of Ĝµ,ν . Let v1, v2, . . . , vνr
be the vertices

of Iνr in decreasing order, so that for every i ∈ [νr] we have

degĜµ,ν
(vi)− κ(vi) = degĜµ⊔ν,∅

(vi)− κ̃(vi)− i+ 1.

Let m ∈ [νr] be such that v = vm, and let b be the number of j ∈ [νr] such that vj has been already
toppled in the first N visits7 of Algorithm 1. We have two cases.

Case 1: vm has been toppled in the first N visits of the algorithm. In this case

ũ(vm) = κ̃(vm) + (N − 1)− degĜµ⊔ν,∅
(vm) = κ̃(vm) +N − 1− n

u(vm) = κ(vm) + (N − b)− degĜµ,ν
(vm) = κ(vm) +N − b− (n− νr + 1)

6The idea of going from κ to κ̃ is to “embed” the configurations of Ĝµ,ν into the configurations of Ĝµ⊔ν,∅ (which is
defined below). It corresponds to add back the removed edges in the independent components, without modifying the level
of the configurations, nor the output of Algorithm 1 (cf. Lemma 6.3).

7Algorithm 1 visits all the non-sink vertices in decreasing order during each iteration of the for loop: these are the
visits we are talking about.
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and so
ũ(vm)− u(vm)− b+ νr = κ̃(vm)− κ(vm) = νr −m,

hence

degĜµ,ν
(vm)− u(vm) = degĜµ,ν

(vm)− ũ(vm) + b−m

= degĜµ⊔ν,∅
(vm)− ũ(vm) + b−m− νr + 1

≤ degĜµ⊔ν,∅
(vm)− ũ(vm),

where the last inequality fomes from the fact that b ≤ νr and 1 ≤ m. Also, clearly in this case
degĜµ,ν

(vm) − u(vm) > 0, so that degĜµ⊔ν,∅
(vm) − ũ(vm) > 0, and in both situations vm does not get

toppled in the (N + 1)st visit of the algorithm.

Case 2: vm has not been toppled in the first N visits of the algorithm. In this case

ũ(vm)− u(vm)− b = κ̃(vm)− κ(vm) = νr −m,

hence
degĜµ,ν

(vm)− u(vm) = degĜµ⊔ν,∅
(vm)− ũ(vm) + b−m+ 1.

We observe that if t > 1 is such that vt has been toppled during the first N visits of the algorithm
running on Ĝµ,ν , then vt−1 has also been toppled. Indeed, let η be the configuration right before the
toppling of vt, and suppose to the contrary that vt−1 has not yet been toppled either. This means that
vt−1 and vt have received the same number of grains and neither has donated any; hence

η(vt−1)− η(vt) = κ(vt−1)− κ(vt) ≥ 0,

and so
degĜµ,ν

(vt−1)− η(vt−1) = degĜµ,ν
(vt)− η(vt−1) ≤ degĜµ,ν

(vt)− η(vt) ≤ 0,

so vt−1 is unstable and should have been toppled during the previous visit.

This observation implies that the set of j ∈ [νr] such that vj has been toppled during the first N visits
of the algorithm is precisely [b]. Now

degĜµ,ν
(vm)− u(vm) = degĜµ⊔ν,∅

(vm)− ũ(vm) + b−m+ 1 ≤ degĜµ⊔ν,∅
(vm)− ũ(vm)

implies that if vm is toppled at the (N + 1)st visit of the algorithm running on Ĝµ⊔ν,∅, then it will
certainly be also toppled at the (N + 1)st visit of the algorithm running on Ĝµ,ν . On the other hand, if
vm is toppled at the (N +1)st visit of the algorithm running on Ĝµ,ν , then the above observation implies
that necessarily b = m− 1, hence

degĜµ,ν
(vm)− u(vm) = degĜµ⊔ν,∅

(vm)− ũ(vm) + b−m+ 1 = degĜµ⊔ν,∅
(vm)− ũ(vm),

so that vm is toppled also at the (N + 1)st visit of the algorithm running on Ĝµ⊔ν,∅.

This shows that Algorithm 1 running for κ on Ĝµ,ν produces exactly the same output when running for
κ̃ on Ĝµ⊔ν,∅, proving that κ̃ is also recurrent, and that its toppling word is exactly the same as the one
of κ, as claimed. □

Given two compositions µ and ν with |µ| + |ν| = n, a sorted stable configuration κ of Ĝµ,ν , and a
permutation σ ∈ Sn, for every i ∈ [n] we set8

uσ−1(i) := σ−1(i) + κ̃(i)− n.

An interpretation of uσ−1(i) in terms of the sandpile model will be provided in the course of the proof of
Proposition 6.6. Let us first look at an example.

Example 6.4. For the configuration κ = 310 11 11810 11 104973 in Example 6.1, we found in Example 5.1
that Algorithm 1 gives σ = 109765321184112. Hence, κ̃ = 310 11 11811 11 1141183, and the word u :=
u1u2 · · · is 011345365223.

8There is no relation with the u in the proof of Lemma 6.3.
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Given a permutation σ = σ(1)σ(2) · · ·σ(n), we add σ(0) := 0 in front of it, and we define its runs as its
maximal consecutive decreasing substrings. Now for every i ∈ [n], we define wσ−1(i) = wσ−1(i)(σ) as

wσ−1(i)(σ) := #{numbers in the same run of i and larger than it}
+#{smaller numbers in the run immediately to the left of the one containing i}.

Example 6.5. The runs of σ = 109765321184112 are separated by bars: 0|10976532|11841|12, so that the
word w = w1(σ)w2(σ) · · · is 123456776434.

The following propositions characterize the sorted recurrent configurations of Ĝµ,ν .

Proposition 6.6. Let κ be a sorted recurrent configuration of Ĝµ,ν . Let σ ∈ Sn be the toppling word
produced by Algorithm 1 applied to κ. Then for every i ∈ [n]

0 ≤ uσ−1(i) < wσ−1(i).

Proof. By Lemma 6.3, σ is also the toppling word computed by the algorithm for κ̃ on Ĝµ⊔ν,∅. So let
us focus on the toppling process of κ̃ in this complete graph.

The first inequality comes from the fact that σ−1(i) + κ̃(i) is the value of the configuration on i, at the
moment that we must topple i. Indeed,

σ−1(i) = position of i in the toppling algorithm
= #{vertices (including the sink) toppled before i}.

Since degĜµ⊔ν,∅
(i) = n, and we are toppling i, we must have σ−1(i) + κ̃(i) ≥ n and so uσ−1(i) ≥ 0. It

also follows that uσ−1(i) is the number of grains remaining at i right after it topples.

Now for the second inequality. Notice that the decreasing runs of σ are exactly the vertices that are
toppled in each iteration of the for loop of Algorithm 1. It follows that wσ−1(i) is the number of vertices
toppled between the time we last checked i and the time we actually topple i in the algorithm. This
number cannot be less than or equal to uσ−1(i), or else i would have been able to topple the last time it
was checked. Indeed, uσ−1(i) is the number of grains on i after i is toppled; if wσ−1(i) ≤ uσ−1(i), then i
would already have been unstable when it was last visited. □

We have a converse of the previous proposition.

Proposition 6.7. Let κ be a sorted stable configuration of Ĝµ,ν , and let σ ∈ Sn be such that for every
i ∈ [n]

0 ≤ uσ−1(i) < wσ−1(i).

Then κ is recurrent and σ is the toppling word given by Algorithm 1 applied to κ.

Proof. To show that κ is recurrent it is enough to show that, after we topple the sink, if we topple the
non-sink vertices in the order given by σ, then at any time we have a non-negative configuration. Using
the interpretation of uσ−1(i) explained in the proof of Proposition 6.6, this is precisely what the inequality
0 ≤ uσ−1(i) guarantees.

Again referring to the proof of Proposition 6.6 for the interpretation of the quantity wσ−1(i), the inequality
uσ−1(i) < wσ−1(i) guarantees that, after toppling the sink, following the toppling sequence σ the vertex i
does not become unstable in a for loop iteration of the algorithm before when it is supposed to topple.
This shows that σ is indeed the output of Algorithm 1, completing the proof of the proposition. □

The above characterization can be checked on an instance by comparing Examples 6.4 and 6.5.
10



7. Bijection with parking functions

We now provide a bijection between sorted recurrent configurations of Ĝµ,ν and the parking functions
in PF(µ; ν).

Let SortRec(µ; ν) be the set of sorted recurrent configurations of Ĝµ,ν . We define the function

Φ: SortRec(µ; ν) → PF(µ; ν)

in the following way: given κ ∈ SortRec(µ; ν), in the notation of Section 6, we set Φ(κ) to be the (unique)
parking function of size n = |µ| + |ν| such that the label i occurs in column n − κ̃(i) (we number the
columns increasingly from left to right) for every i ∈ [n].

Before showing that Φ is a well-defined bijection, let us look at an example.

Example 7.1. The parking function D ∈ PF((4, 3); (3, 2)) in Figure 1 is the image Φ(κ) of the configu-
ration κ in Example 4.3 (κ̃ is computed in Example 6.4). The colored crosses in the diagram in Figure 1
denote the extra shift coming from considering n − κ̃(i) instead of n − κ(i) for i in an independent
component.

We want to show (1) that the map Φ is well-defined, i.e. that our definition of Φ(κ) actually gives a
parking function in PF(µ; ν), and (2) that Φ is bijective.

For (2): let κ ∈ SortRec(µ; ν), and let σ ∈ Sn be the toppling word given by Algorithm 1 applied to κ.
Recall the definition of the vector u = u(σ) := (u1, u2, . . . , un), i.e. for every i ∈ [n]

(7.1) σ−1(i)− uσ−1(i) = n− κ̃(i).

Hence, we can see Φ as the map sending the pair (σ, u), which by Proposition 6.6 satisfies 0 ≤ ui < wi(σ)
for every i ∈ [n], into the parking function whose label i occurs in column σ−1(i) − uσ−1(i) for every
i ∈ [n].

Now we can apply [LR04, Theorem 44], which we restate in our notation.9

Theorem 7.2 (Loehr-Remmel bijection). Via the map Φ the pairs (σ, u) with 0 ≤ uj < wj(σ) for every
j ∈ [n] are sent bijectively onto the elements of PF(n), in such a way that

(
n+1
2

)
−

∑n
j=1(j − uj) goes

into area and σ is the pmaj word of the image, which implies that maj(σnσn−1 · · ·σ1) goes into pmaj.

For (1), it remains to observe that the parking function that we obtained is actually in PF(µ; ν): indeed
notice that if i, j ∈ Iνr

with i < j, then Remark 6.2 implies that κ̃(i) > κ̃(j) so that n− κ̃(i) < n− κ̃(j),
hence i occurs in a column strictly to the left of the column of j. Therefore, i occurs necessarily in a row
lower than the row of j. Similarly, if i, j ∈ Kµs

with i < j, then n − κ̃(i) ≥ n − κ̃(j), so that i occurs
necessarily in a row higher than the row of j (inside the same column of a parking function the labels
occur in increasing order from bottom to top). All this shows that the pmaj reading word of Φ(κ) is in
W(µ; ν), as we wanted.

The preceding discussion proves the following proposition.

Proposition 7.3. The map Φ is a well-defined bijection.

In fact Theorem 7.2 also provides the following immediate theorem, which is the main result of this
article.

Theorem 7.4. The map Φ is a well-defined bijection such that area(Φ(κ)) = level(κ) and such that the
σ obtained from Algorithm 1 applied to κ equals the pmaj word of Φ(κ), so that pmaj(Φ(κ)) = delay(κ).

9To match the notation in [LR04], one should keep in mind that the ingredients of the occurring formulas are computed
on the reverse word σ(n)σ(n − 1) · · ·σ(1), so that for example the positions σ−1(i) get complemented to n + 1; also, the
map Φ is called “G” in [LR04].
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Proof. The statement about delay follows from Remark 5.3, while the statement about level follows from
the following easy computation:

level(κ) = −|Es(Ĝµ,ν)|+
n∑

i=1

κ(i)

(using Remark 4.8) = −
(
n

2

)
+

∑
i≥0

(
νi
2

)
+

n∑
i=1

κ(i)

= n2 −
(
n

2

)
− n2 +

n∑
i=1

κ̃(i)

=

(
n+ 1

2

)
−

n∑
i=1

(n− κ̃(i))

(using (7.1)) =
(
n+ 1

2

)
−

n∑
i=1

(i− ui).

□

Now Theorem 1.1 is an immediate consequence of this result combined with Theorem 2.9. It can be
checked in the instance of Example 7.1 (cf. Examples 5.1, 5.4, 2.7, 2.3 and 4.9).
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